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I. INTRODUCTION

DiPersio, Simon, and Merendino1 presented equations to determine
the penetration depth and hole volume associated with a shaped charge jet
impacting a given target. In particular, given jet and target material
densities, pj and pt, jet break-up time, t1 , initial jet tip velocity,

0
V. , minimum penetration velocity*, Uin, the penetration depth, as a

function of the virtual stand-off distance, Z0, can be computed. In

addition, if given average jet diameter, d., and an energy constant, C,

DiPersio, et al provide equations which enables one to calculate the
hole volume associated with the penetrating jet. DiPersio, et al

obtained values of tl, Umin' and V.0 from experimental measurements for

a precision shaped charge, with a 42 conical liner, and calculated the
total penetration depth as a function of stand-off distance for this
particular charge. They obtained favorable agreement with experimental
measurements of penetration depth at various stand-off distances where
the stand-off distance is the distance from the base of the liner to the
target.

A question raised by one of the authors (J.T.H.) was, "Under what
conditions does the experimental penetration depth - stand-off data and
hole volume - stand-off data determine or infer the values of C, Umin'

and t ?", i.e., the parameters utilized in the DiPersio, Simon, and

Merendino (DSM) equations.

A partial answer to this question was given earlier by Majerus and
Scott 2, who utilized a modified form of the DSM equations and investigated
the round-to-round variability of C and Umi n . Majerus and Scott provided

a computational method of determining C and U . from experimental

penetration and hole volume - stand-off data. In their method, they
required, in addition to target and material properties, location of
virtual origin, jet break-up time, t1 , jet tip velocity, jet diameter,
etc.

1 R. DiPersio, J. Simon, and A. Merendino, "Penetration of Shaped Charge

Jets into MetalZic Targets," BRL R-1296, September 1965, (UNCLASSIFIED).
( AD #476717)
Also called an interaction parameter; see Reference 2.

2 J. Majerus and B. Scott, "CUMIN: A Computer Code for Determining

Certain Jet/Target Parameters from Experimental Data," ARBRL-TR-02129,
December 1978, (UNCLASSIFIED). (AD #B035331L)
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In the following, we show that functions of the DSM parameters, t1.
Umin and C, can be determined from experimental penetration and hole

volume-stand-off data or, in fact, from desired penetration performance
data. These functions, together with specification of V and jet diameter

djj
di yield estimates of tl, Umin, and C. Since V.j a nd dj are readily

determined from the BASC- code and only require knowledge of material
densities, some explosive properties, liner thickness, c, and cone
angle, a, the methodology provided herein enables one to calculate these
DSM parameters without additional experimentation. Such a procedure may
be useful in shaped charge design problems.

II. DETERMINATION OF UMIN AND t

Letting x = VP~tl, and y = Umi t, then the total penetration of the

jet into the target is given by*

P T = "o [ { x/('+y)y} -1

whenever

0 < Z (ly+y)y y)y/x]/Y (2)

where y = /P-t/Pi, or by

PT [(l+y)x1/(Y+I)Z Y/(I+Y)- (I+y)yxl/(y+I)z Y/(I+Y)1/y.o-z (3)

T0 0 0

whenever
l/y

(l+y)y[(l+y)y/x] x (4)

or

P= [x- y(x+yZo) ] / y (S)

whenever

xc zo _ x (x/y-1)/ y (6)

3 j. Harrison, "Improved AnalyticaZ S.'raped (MJarge Code: BASC",
ARERL-TR- 02300, 14rch 1981. (AD #A100275)
4 .t/ l,



Equations (1) - (6) enable one to calculate the total jet penetra-
tion as a function of stand-off from the virtual origin, Zo , whenever

x and y are known. We note from (2), (4), and (6) that the boundary of
each region is also a function of x and y. Thus if x'and y* are known
values of x and y, then this specification determines a partition such
that given a value of Z one can determine the corresponding value of P

If we are given { (P T,i Zo ,i for i = 1 .... N and where

PT,i is either the observed value of PT at Z 0 Z o,i or is the desired

performance at Z0  Z then we can obtain "best" values of x and y, i.e.,

x*, y* as follows. We note that the boundary between each region of
validity for equations (1), (3), and (5) is a function of x and y, thus
for each value of x and y, we can compute the value of PT = f (xYZ0 )

for any given value of Z0 . If not, then the values of x and y lie

outside the feasible region. We let

N 2
H(x,y) = Z [ Pi (Zo.) - f (xly'Zo,i) ]  (7)

0,1 0,l

and we determine x*, y* such that

H (x*,y*) < H (x,y) for all x,y. (8)

If V.0 is known, then t and Umi n follow from the definition of x and y.

III. AN EXA4PLE

Experimental data for the BRL Standard-Shaped charge are provided
by DSI. Included within this data are total penetration vs. stand-off,
jet break-up time, initial jet tip velocity, and minimum penetration
velocity Umin . We have utilized the penetration stand-off data for
stand-off distances through 20 cone diameters (we did not use the
penetration depth at 25 cone diameters) in equation (7), i.e., we
obtained the solution x*, y* from obtaining

N2
MIN E [ PT,i (Zoi) - f (xYZo,i) (9)
x,y i=l

from which we found

x* = 85.905 cm (10)

y* = 11.41 cm

,!7



DSM reported that V. = 0.830 cm/usec thus since x* = V. t*

and y* = Umin t! we have

t* = 103.5 usec (11)

U*. = 0.110 cm/sec
min

as compared to DSM experimental values of

t = 103 usec (12)

U min = 0.10 cm/psec

It is appropriate at this point to recall that V.° can be calculatedJ
from the BASC code, thus the above calculation can be performed without
knowledge of the experimental value of V.0.

J

Since the determination of x* and y* also results in the deter-
mination of the corresponding region of penetration, i.e., Ze, i corres-

ponds to a region in x - y space, the penetration is also calculated - and
required in the minimization of (9). The calculated penetration vs virtual
stand-off distance is shown in Figure 1 along with the experimental values
of the penetration depth. The agreement is excellent.

The minimization of (9) was accomplished by utilizing the "Complex
Method" due to M. J. Box4. This method requires only function evalua-
tions and not derivatives; thus the method is ideal for this particular
application.

IV. VIRTUAL ORIGIN APPROXIMATION

In the above example, the penetration depth was given as a function
of the virtual stand-off distance. In the DSM report, the authors
obtained the location of the virtual origin from flash radiograph
measurements; however, in many other reports, the virtual origin is
either not given or is approximated by a "rule of thumb". For example,
DiPersio, Jones, et a15 use, from past experience, the rule "the

J. '; x, 'A ',e," "W' o,,' c", 'o'estr-vie,,? Opt-m:vt*on an," ' mrparieon
t ' 7 r "s'c', ' o'rutder J7. , .'~ 2df'

... -- ~ a2 er Y. c:( ~.*o~~ zr Altimnurr Tiners,
4",' LOP ~ 7'..VTT) (AD #823839)

8
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approximate location of the virtual origin of a highly confined charge,
is three-fourths of the liner height ...". In attempting to

determine t and Umin from the data of reference 5, we found that the

above rule did not result in adequate agreement between computed and
experimental values. Therefore, we modified our computational pro-
cedures and let

Z = B + S. (13)0

where B is the distance from the base of the liner, along the cone
axis, to the apparent origin of the jet, and S is the stand-off
distance. Thus equation (7) becomes

N
H (x,y,B) = E [ Pl,i (Si,B) - f (xyBSi) ]2 (14)

i=l

so that we now seek x*, y*, and B* such that

H (x*,y*,B*) H (x,y,B)

Utilizing the penetration data of reference 5, equation (14) was
minimized. In this minimization process, we constrained B to lie in
the interval

0< B< B
-- max

where Bax - height of cone + distance allowed for liner retainer ring

(z 1.4 cm). For the 200, 600, and 900 conical liners, the resulting
agreement of calculated and experimental jet break-up time was excellent.
For the 400 copper liner, we found that if B was taken to be twicemax
the liner height, then good agreement could also be attained for this
case. In Table 1, we present calculated break-up times t1 * and observed
values tl, calculated minimum pntainvelocity U*n and the calculated

location of virtual origin B*.

In obtaining the jet break-up times, tl*, listed in Table 1, we
used, in each case, the corresponding experimental jet tip velocity
reported in reference 5; however, it is noted again that the jet tip
velocity can be calculated from the BASC code utilizing liner thickness,
E, apex angle, a, and explosive and liner material properties. In

Table 2, we compare the BASC-code generated values with the experimental
values for some of the 3.81 cm copper and aluminum liners of reference 5.

10



Table 1. Some Calculated and Observed Jet Data for
the 3.81 cm Copper Liner Shaped Charge
(asterisk denotes calculated value)

* ^

t,, jisec to, lisec U* , cm/psec B , cm0 ~min'

200 41.5 40.8 0.18 12.2

400 62.5 63.9 0.16 10.0

600 65.3 66.7 0.14 4.4

90 63.4 64.3 0.11 0.0

I!
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Tabie 2. Expeiimental and BASC-Code Generated Values of Jet Tip
Velocity for Selected 3.81 cm Aluminum and Copper Liners

0 .0Cone Angle Material *.,CM114SCE cm/;isec (BASC)

200 Cu099 1.03

200  Al 1.12 1.08

400 Cu 0.82 0.84

1400 Al 0.93 0.91

600 Cu 0.67 0.74

60' Al 0.81 0.82

11



In Figures 2-5, we have plotted the "best" penetration - virtual
stand-off curves generated by minimizing (14) for each of the 3.8 cm (1.5")
copper liners of reference 5. In each case, we used the average
penetration values for each liner and we have plotted these average values,
for comparison, on each figure. With the exception of the 200 liner,

the agreement is satisfactory.

In Figure 6, we have plotted the computed "best" value B* of the
virtual origin location as a function of cone angle for the 3.81 cm
copper liner and the 420 BRL precision shaped charge of reference 1.
The plot indicates that the virtual origin location is approximately
linear with respect to cone angle.

Finally, in Figure 7, we have plotted "best" values of U Min as

a function of cone angle for the 1.91 and 3.81 cm copper conical liners
of reference S. It appears that for the liner, explosive, and target
complex of reference S that Ui is approximately linear with respect to

cone angle and does not depend greatly upon the cone base diameter for
these scaled liners. Also, on Figure '? we have plotted W. whichMIin
was calculated from the penetration stand-off data of reference 1. We
note that both the explosive and target properties have changed for
this case.

V. DETERMINATION OF THE ENERGY CONSTANT

The hole volume produced by the penetrating jet can be calculated
for each region of penetration by the equations (38), (40), and (42)
of the DSM report. For example, for region I+

T  = x ( - [ ( + y ) y ] 3
TT ~~ x

where

Jr (V 0 I)2 (IS)
.24C i

For each of the other regions, each equation is a function of F, x, Z

and y. We have shown previously that x and y, i.e., x*, and y* can
be obtained by minimizing (7) or (14), and Lave noted that d. and V.o

can be obtained from the BASC-code, thus if we denote the calculated
hole volume, in its appropriate stand-off region by g (Zo , * y*, x)
we obtain * by minimizing

N

r o - g (o,i,x*,y*,) ' (16)
i=l

+See equations (2), (4), and (6) for corresponding boundary relations.

13
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The value of = * which minimizes (16) can then be used to

determine the energy constant C whenever V.0 and d. are known. Since
. 0 c

both d. and V. ° can be determined with BASC then a "best" value, C*,

of the energy constant can be determined.

VI. SUMMARY

We have shown how penetration performance - stand-off data and
hole volume - stand-off data can be utilized to determine values of
specific functions of the DiPersio, Simon, Merendino shaped-charge
parameters C, Umin, and t., and that specification of the initial jet

tip velocity V.0 determines "best" values of tI and Umin. If, inJ
addition, the jet diameter d. is known, then the energy constant C

J
is readily determined. It is of interest to note that V.0 and d. areJ J
readily determined from Harrison's BASC code and are functions of the
liner thickness and cone angle. The implication of this is that since
x* and y* are determined from penetration performance data one may then
search for "best" values of cone angle, a, and liner thickness, c,
which maximizes the jet break-up time t1 . From the definition of x we

0.see that one should choose a and e such that V. is a minimum.J

20
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